Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Virol Methods ; 317: 114732, 2023 07.
Article in English | MEDLINE | ID: covidwho-2290746

ABSTRACT

The ongoing COVID-19 pandemic has emphasized the significance of wastewater surveillance in monitoring and tracking the spread of infectious diseases, including SARS-CoV-2. The wastewater surveillance approach detects genetic fragments from viruses in wastewater, which could provide an early warning of outbreaks in communities. In this study, we determined the concentrations of four types of endogenous viruses, including non-enveloped DNA (crAssphage and human adenovirus 40/41), non-enveloped RNA (enterovirus), and enveloped RNA (SARS-CoV-2) viruses, from wastewater samples using the adsorption-extraction (AE) method with electronegative HA membranes of different pore sizes (0.22, 0.45, and 0.80 µm). Our findings showed that the membrane with a pore size of 0.80 µm performed comparably to the membrane with a pore size of 0.45 µm for virus detection/quantitation (repeated measurement one-way ANOVA; p > 0.05). We also determined the recovery efficiencies of indigenous crAssphage and pepper mild mottle virus, which showed recovery efficiencies ranging from 50% to 94% and from 20% to 62%, respectively. Our results suggest that the use of larger pore size membranes may be beneficial for processing larger sample volumes, particularly for environmental waters containing low concentrations of viruses. This study offers valuable insights into the application of the AE method for virus recovery from wastewater, which is essential for monitoring and tracking infectious diseases in communities.


Subject(s)
COVID-19 , Viruses , Humans , Wastewater , SARS-CoV-2/genetics , Pandemics , Adsorption , Wastewater-Based Epidemiological Monitoring , RNA , RNA, Viral
2.
Sci Total Environ ; : 160072, 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2238404

ABSTRACT

In this study, two virus concentration methods, namely Adsorption-extraction (AE) and Nanotrap® Magnetic Virus Particles (NMVP) along with commercially available extraction kits were used quantify endogenous pepper mild mottle virus (PMMoV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in nucleic acid extracted from 48 wastewater samples collected over six events from eight wastewater treatment plants (WWTPs). The main aim was to determine which workflow (i.e., concentration and extraction methods) produces greater concentrations of PMMoV and SARS-CoV-2 gene copies (GC) in comparison with each other. Turbidity and total suspended solids (TSS) of wastewater samples within and among the eight WWTPs were highly variable (41-385 NTU and 77-668 mg/L TSS). In 58 % of individual wastewater samples the log10 GC concentrations of PMMoV were greater by NMVP workflow compared to AE workflow. Paired measurements of PMMoV GC/10 mL from AE and NMVP across all 48 wastewater samples were weakly correlated (r = 0.455, p = 0.001) and demonstrated a poor linear relationship (r2 = 0.207). The log10 GC concentrations of SARS-CoV-2 in 69 % of individual samples were greater by AE workflow compared to NMVP workflow. In contrast to PMMoV, the AE and NMVP derived SARS-CoV-2 GC counts were strongly correlated (r = 0.859, p < 0.001) and demonstrated a strong linear relationship (r2 = 0.738). In general, the PMMoV GC achieved by the NMVP workflow decreased with increasing turbidity, but the PMMoV GC by the AE workflow did not appear to be sensitive to either turbidity or TSS levels. These findings suggest that suspended solids concentration, and the intended target for analysis should be considered when validating an optimal workflow for wastewater surveillance.

3.
Sci Total Environ ; 864: 161023, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2159794

ABSTRACT

The early warning and tracking of COVID-19 prevalence in the community provided by wastewater surveillance has highlighted its potential for much broader viral disease surveillance. In this proof-of-concept study, 46 wastewater samples from four wastewater treatment plants (WWTPs) in Queensland, Australia, were analyzed for the presence and abundance of 13 respiratory viruses, and the results were compared with reported clinical cases. The viruses were concentrated using the adsorption-extraction (AE) method, and extracted nucleic acids were analyzed using qPCR and RT-qPCR. Among the viruses tested, bocavirus (BoV), parechovirus (PeV), rhinovirus A (RhV A) and rhinovirus B (RhV B) were detected in all wastewater samples. All the tested viruses except influenza B virus (IBV) were detected in wastewater sample from at least one WWTP. BoV was detected with the greatest concentration (4.96-7.22 log10 GC/L), followed by Epstein-Barr virus (EBV) (4.08-6.46 log10 GC/L), RhV A (3.95-5.63 log10 GC/L), RhV B (3.74-5.61 log10 GC/L), and PeV (3.17-5.32 log10 GC/L). Influenza viruses and respiratory syncytial virus (RSV) are notifiable conditions in Queensland, allowing the gene copy (GC) concentrations to be compared with reported clinical cases. Significant correlations (ρ = 0.60, p < 0.01 for IAV and ρ = 0.53, p < 0.01 for RSV) were observed when pooled wastewater influenza A virus (IAV) and RSV log10 GC/L concentrations were compared to log10 clinical cases among the four WWTP catchments. The positive predictive value for the presence of IAV and RSV in wastewater was 97 % for both IAV and RSV clinical cases within the four WWTP catchments. The overall accuracy of wastewater analysis for predicting clinical cases of IAV and RSV was 97 and 90 %, respectively. This paper lends credibility to the application of wastewater surveillance to monitor respiratory viruses of various genomic characteristics, with potential uses for increased surveillance capabilities and as a tool in understanding the dynamics of disease circulation in the communities.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Influenza, Human , Humans , Wastewater , Queensland/epidemiology , Herpesvirus 4, Human , Wastewater-Based Epidemiological Monitoring , Respiratory Syncytial Viruses/genetics , Influenza B virus/genetics , Australia , Influenza, Human/epidemiology
4.
ACS ES T Water ; 2(11): 1871-1880, 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-1927040

ABSTRACT

We compared reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and RT digital PCR (RT-dPCR) platforms for the trace detection of SARS-CoV-2 RNA in low-prevalence COVID-19 locations in Queensland, Australia, using CDC N1 and CDC N2 assays. The assay limit of detection (ALOD), PCR inhibition rates, and performance characteristics of each assay, along with the positivity rates with the RT-qPCR and RT-dPCR platforms, were evaluated by seeding known concentrations of exogenous SARS-CoV-2 in wastewater. The ALODs using RT-dPCR were approximately 2-5 times lower than those using RT-qPCR. During sample processing, the endogenous (n = 96) and exogenous (n = 24) SARS-CoV-2 wastewater samples were separated, and RNA was extracted from both wastewater eluates and pellets (solids). The RT-dPCR platform demonstrated a detection rate significantly greater than that of RT-qPCR for the CDC N1 and CDC N2 assays in the eluate (N1, p = 0.0029; N2, p = 0.0003) and pellet (N1, p = 0.0015; N2, p = 0.0067) samples. The positivity results also indicated that for the analysis of SARS-CoV-2 RNA in wastewater, including the eluate and pellet samples may further increase the detection sensitivity using RT-dPCR.

5.
Water Res ; 220: 118621, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1852231

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has become an important tool for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within communities. In particular, reverse transcription-quantitative PCR (RT-qPCR) has been used to detect and quantify SARS-CoV-2 RNA in wastewater, while monitoring viral genome mutations requires separate approaches such as deep sequencing. A high throughput sequencing platform (ATOPlex) that uses a multiplex tiled PCR-based enrichment technique has shown promise in detecting variants of concern (VOC) while also providing virus quantitation data. However, detection sensitivities of both RT-qPCR and sequencing can be impacted through losses occurring during sample handling, virus concentration, nucleic acid extraction, and RT-qPCR. Therefore, process limit of detection (PLOD) assessments are required to estimate the gene copies of target molecule to attain specific probability of detection. In this study, we compare the PLOD of four RT-qPCR assays (US CDC N1 and N2, China CDC N and ORF1ab) for detection of SARS-CoV-2 to that of ATOPlex sequencing by seeding known concentrations of gamma-irradiated SARS-CoV-2 into wastewater. Results suggest that among the RT-qPCR assays, US CDC N1 was the most sensitive, especially at lower SARS-CoV-2 seed levels. However, when results from all RT-qPCR assays were combined, it resulted in greater detection rates than individual assays, suggesting that application of multiple assays is better suited for the trace detection of SARS-CoV-2 from wastewater samples. Furthermore, while ATOPlex offers a promising approach to SARS-CoV-2 wastewater surveillance, this approach appears to be less sensitive compared to RT-qPCR under the experimental conditions of this study, and may require further refinements. Nonetheless, the combination of RT-qPCR and ATOPlex may be a powerful tool to simultaneously detect/quantify SARS-CoV-2 RNA and monitor emerging VOC in wastewater samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral/genetics , Reverse Transcription , SARS-CoV-2/genetics , Wastewater/analysis , Wastewater-Based Epidemiological Monitoring
6.
Water Res ; 218: 118481, 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1796028

ABSTRACT

Monitoring SARS-CoV-2 RNA in sewer systems, upstream of a wastewater treatment plant, is an effective approach for understanding potential COVID-19 transmission in communities with higher spatial resolutions. Passive sampling devices provide a practical solution for frequent sampling within sewer networks where the use of autosamplers is not feasible. Currently, the design of upstream sampling is impeded by limited understanding of the fate of SARS-CoV-2 RNA in sewers and the sensitivity of passive samplers for the number of infected individuals in a catchment. In this study, passive samplers containing electronegative membranes were applied for at least 24-h continuous sampling in sewer systems. When monitoring SARS-CoV-2 along a trunk sewer pipe, we found RNA signals decreased proportionally to increasing dilutions, with non-detects occurring at the end of pipe. The passive sampling membranes were able to detect SARS-CoV-2 shed by >2 COVID-19 infection cases in 10,000 people. Moreover, upstream monitoring in multiple sewersheds using passive samplers identified the emergence of SARS-CoV-2 in wastewater one week ahead of clinical reporting and reflected the spatiotemporal spread of a COVID-19 cluster within a city. This study provides important information to guide the development of wastewater surveillance strategies at catchment and subcatchment levels using different sampling techniques.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , RNA, Viral , Wastewater , Wastewater-Based Epidemiological Monitoring
7.
Sci Total Environ ; 820: 153171, 2022 May 10.
Article in English | MEDLINE | ID: covidwho-1629486

ABSTRACT

On the 26th of November 2021, the World Health Organization (WHO) designated the newly detected B.1.1.529 lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the Omicron Variant of Concern (VOC). The genome of the Omicron VOC contains more than 50 mutations, many of which have been associated with increased transmissibility, differing disease severity, and potential to evade immune responses developed for previous VOCs such as Alpha and Delta. In the days since the designation of B.1.1.529 as a VOC, infections with the lineage have been reported in countries around the globe and many countries have implemented travel restrictions and increased border controls in response. We putatively detected the Omicron variant in an aircraft wastewater sample from a flight arriving to Darwin, Australia from Johannesburg, South Africa on the 25th of November 2021 via positive results on the CDC N1, CDC N2, and del(69-70) RT-qPCR assays per guidance from the WHO. The Australian Northern Territory Health Department detected one passenger onboard the flight who was infected with SARS-CoV-2, which was determined to be the Omicron VOC by sequencing of a nasopharyngeal swab sample. Subsequent sequencing of the aircraft wastewater sample using the ARTIC V3 protocol with Nanopore and ATOPlex confirmed the presence of the Omicron variant with a consensus genome that clustered with the B.1.1.529 BA.1 sub-lineage. Our detection and confirmation of a single onboard Omicron infection via aircraft wastewater further bolsters the important role that aircraft wastewater can play as an independent and unintrusive surveillance point for infectious diseases, particularly coronavirus disease 2019.


Subject(s)
COVID-19 , SARS-CoV-2 , Aircraft , Australia , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , South Africa/epidemiology , Wastewater
8.
Sci Total Environ ; 799: 149386, 2021 Dec 10.
Article in English | MEDLINE | ID: covidwho-1545398

ABSTRACT

To support public-health-related disease surveillance and monitoring, it is crucial to concentrate both enveloped and non-enveloped viruses from domestic wastewater. To date, most concentration methods were developed for non-enveloped viruses, and limited studies have directly compared the recovery efficiency of both types of viruses. In this study, the effectiveness of two different concentration methods (Concentrating pipette (CP) method and an adsorption-extraction (AE) method amended with MgCl2) were evaluated for untreated wastewater matrices using three different viruses (SARS-CoV-2 (seeded), human adenovirus 40/41 (HAdV 40/41), and enterovirus (EV)) and a wastewater-associated bacterial marker gene targeting Lachnospiraceae (Lachno3). For SARS-CoV-2, the estimated mean recovery efficiencies were significantly greater by as much as 5.46 times, using the CP method than the AE method amended with MgCl2. SARS-CoV-2 RNA recovery was greater for samples with higher titer seeds regardless of the method, and the estimated mean recovery efficiencies using the CP method were 25.1 ± 11% across ten WWTPs when wastewater samples were seeded with 5 × 104 gene copies (GC) of SARS-CoV-2. Meanwhile, the AE method yielded significantly greater concentrations of indigenous HAdV 40/41 and Lachno3 from wastewater compared to the CP method. Finally, no significant differences in indigenous EV concentrations were identified in comparing the AE and CP methods. These data indicate that the most effective concentration method varies by microbial analyte and that the priorities of the surveillance or monitoring program should be considered when choosing the concentration method.


Subject(s)
COVID-19 , Enterovirus , Viruses , Enterovirus/genetics , Humans , RNA, Viral , SARS-CoV-2 , Sewage , Wastewater
9.
Environ Int ; 158: 106938, 2022 01.
Article in English | MEDLINE | ID: covidwho-1466319

ABSTRACT

Controlling importation and transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from overseas travelers is essential for countries, such as Australia, New Zealand, and other island nations, that have adopted a suppression strategy to manage very low community transmission. Wastewater surveillance of SARS-CoV-2 RNA has emerged as a promising tool employed in public health response in many countries globally. This study aimed to establish whether the surveillance of aircraft wastewater can be used to provide an additional layer of information to augment individual clinical testing. Wastewater from 37 long-haul flights chartered to repatriate Australians was tested for the presence of SARS-CoV-2 RNA. Children 5 years or older on these flights tested negative for coronavirus disease 19 (COVID-19) (deep nasal and oropharyngeal reverse-transcription (RT)-PCR swab) 48 h before departure. All passengers underwent mandatory quarantine for 14-day post arrival in Howard Springs, NT, Australia. Wastewater from 24 (64.9 %) of the 37 flights tested positive for SARS-CoV-2 RNA. During the 14 day mandatory quarantine, clinical testing identified 112 cases of COVID-19. Surveillance for SARS-CoV-2 RNA in repatriation flight wastewater using pooled results from three RT-qPCR assays demonstrated a positive predictive value (PPV) of 87.5 %, a negative predictive value (NPV) of 76.9 % and 83.7% accuracy for COVID-19 cases during the post-arrival 14-day quarantine period. The study successfully demonstrates that the surveillance of wastewater from aircraft for SARS-CoV-2 can provide an additional and effective tool for informing the management of returning overseas travelers and for monitoring the importation of SARS CoV-2 and other clinically significant pathogens.


Subject(s)
COVID-19 , Australia , Child , Humans , RNA, Viral , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Wastewater , Wastewater-Based Epidemiological Monitoring
10.
J Travel Med ; 27(5)2020 08 20.
Article in English | MEDLINE | ID: covidwho-729174

ABSTRACT

BACKGROUND: Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries around the world are developing strategies to minimize SARS-CoV-2 transmission associated with resuming activity. This study investigated the possible use of SARS-CoV-2 RNA wastewater surveillance from airline and cruise ship sanitation systems and its potential use as a COVID-19 public health management tool. METHODS: Aircraft and cruise ship wastewater samples (n = 21) were tested for SARS-CoV-2 using two virus concentration methods, adsorption-extraction by electronegative membrane (n = 13) and ultrafiltration by Amicon (n = 8), and five assays using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and RT-droplet digital PCR (RT-ddPCR). Representative qPCR amplicons from positive samples were sequenced to confirm assay specificity. RESULTS: SARS-CoV-2 RNA was detected in samples from both aircraft and cruise ship wastewater; however concentrations were near the assay limit of detection. The analysis of multiple replicate samples and use of multiple RT-qPCR and/or RT-ddPCR assays increased detection sensitivity and minimized false-negative results. Representative qPCR amplicons were confirmed for the correct PCR product by sequencing. However, differences in sensitivity were observed among molecular assays and concentration methods. CONCLUSIONS: The study indicates that surveillance of wastewater from large transport vessels with their own sanitation systems has potential as a complementary data source to prioritize clinical testing and contact tracing among disembarking passengers. Importantly, sampling methods and molecular assays must be further optimized to maximize detection sensitivity. The potential for false negatives by both wastewater testing and clinical swab testing suggests that the two strategies could be employed together to maximize the probability of detecting SARS-CoV-2 infections amongst passengers.


Subject(s)
Aircraft , Betacoronavirus/isolation & purification , Coronavirus Infections , Pandemics , Pneumonia, Viral , RNA, Viral/isolation & purification , Ships , Wastewater/virology , COVID-19 , Humans , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Travel
11.
Sci Total Environ ; 739: 139960, 2020 Oct 15.
Article in English | MEDLINE | ID: covidwho-548128

ABSTRACT

There is currently a clear benefit for many countries to utilize wastewater-based epidemiology (WBE) as part of ongoing measures to manage the coronavirus disease 2019 (COVID-19) global pandemic. Since most wastewater virus concentration methods were developed and validated for nonenveloped viruses, it is imperative to determine the efficiency of the most commonly used methods for the enveloped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Municipal wastewater seeded with a human coronavirus (CoV) surrogate, murine hepatitis virus (MHV), was used to test the efficiency of seven wastewater virus concentration methods: (A-C) adsorption-extraction with three different pre-treatment options, (D-E) centrifugal filter device methods with two different devices, (F) polyethylene glycol (PEG 8000) precipitation, and (G) ultracentrifugation. MHV was quantified by reverse-transcription quantitative polymerase chain reaction and the recovery efficiency was calculated for each method. The mean MHV recoveries ranged from 26.7 to 65.7%. The most efficient methods were adsorption-extraction methods with MgCl2 pre-treatment (Method C), and without pre-treatment (Method B). The third most efficient method used the Amicon® Ultra-15 centrifugal filter device (Method D) and its recovery efficiency was not statistically different from the most efficient methods. The methods with the worst recovery efficiency included the adsorption-extraction method with acidification (A), followed by PEG precipitation (F). Our results suggest that absorption-extraction methods with minimal or without pre-treatment can provide suitably rapid, cost-effective and relatively straightforward recovery of enveloped viruses in wastewater. The MHV is a promising process control for SARS-CoV-2 surveillance and can be used as a quality control measure to support community-level epidemic mitigation and risk assessment.


Subject(s)
Coronavirus Infections , Murine hepatitis virus , Pandemics , Pneumonia, Viral , Viruses , Animals , Betacoronavirus , COVID-19 , Humans , Mice , SARS-CoV-2 , Wastewater
12.
Sci Total Environ ; 728: 138764, 2020 Aug 01.
Article in English | MEDLINE | ID: covidwho-618510

ABSTRACT

Infection with SARS-CoV-2, the etiologic agent of the ongoing COVID-19 pandemic, is accompanied by the shedding of the virus in stool. Therefore, the quantification of SARS-CoV-2 in wastewater affords the ability to monitor the prevalence of infections among the population via wastewater-based epidemiology (WBE). In the current work, SARS-CoV-2 RNA was concentrated from wastewater in a catchment in Australia and viral RNA copies were enumerated using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) resulting in two positive detections within a six day period from the same wastewater treatment plant (WWTP). The estimated viral RNA copy numbers observed in the wastewater were then used to estimate the number of infected individuals in the catchment via Monte Carlo simulation. Given the uncertainty and variation in the input parameters, the model estimated a median range of 171 to 1,090 infected persons in the catchment, which is in reasonable agreement with clinical observations. This work highlights the viability of WBE for monitoring infectious diseases, such as COVID-19, in communities. The work also draws attention to the need for further methodological and molecular assay validation for enveloped viruses in wastewater.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Wastewater/virology , COVID-19 , Epidemiological Monitoring , Humans , Monte Carlo Method , Pandemics , Queensland/epidemiology , RNA, Viral/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL